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ABSTRACT A discrete wave mechanical treatment of the
hydrogen atom is extended to deal with states involving non-
zero angular momentum. Only the radial portions of the wave
vectors are covered. It is predicted that there is a nonzero
minimum distance between the electron and the nucleus; this
threshold distance increases with increasing angular momen-
tum. Appropriate finite difference equations are formulated.
The states with angular momentum exhibit the same degenera-
cy as do corresponding energy levels obtained from solutions
of Schridinger's equation.

In a recent article (1), I treated the quantum mechanical
problem of a spherically symmetric hydrogen atom by using
a discrete wave mechanical approach. This was done by
solving a finite difference equation (instead of Schrodinger's
equation), leading to solutions in the form of wave vectors
(instead of wave functions). The formula for allowable ener-
gy levels, written explicitly for a newly defined "wave vec-
tor energy," looks just like the Bohr-Rydberg equation. The
initial treatment was, however, limited to the hydrogen atom
with zero angular momentum; this was done to avoid prob-
lems attending nonspherical symmetry.
To solve the more general problem-that involving angu-

lar momentum effects-would appear to require the devel-
opment of discrete counterparts to the spherical harmonics.
Unhappily, I have not yet succeeded in obtaining such dis-
crete spherical harmonics in an exact form.* Nevertheless, it
appears possible to establish the radial factors of the proba-
bility wave vectors and to see what, if anything, happens to
the energy. It is my purpose in this paper to deal with that
specific aspect of the discrete hydrogen atom problem. It is
also my hope that someone, perhaps by using clues appear-
ing in this article, will be able to develop a precise set of
discrete spherical harmonics.

Search for a Complete Set of Discrete Radial Polynomials

To help us develop a general set of radial wave vectors for
the hydrogen atom with angular momentum, let us first ex-
amine certain features of the differential equation treatment.
When we tackle the problem with Schrodinger's equation,
we use polar coordinates (r, 0, )), thereby enabling us to
separate the partial differential equation into three ordinary
differential equations. The 4 equation gives rise to a quan-
tum number m, which then appears explicitly in the 0 equa-
tion. The 6 equation, in turn, brings out another quantum
number, 1, which appears explicitly in the r equation. Final-
ly, the r equation leads to a third quantum number, n, upon
which the energy depends.

In dealing with the problem in a discrete way, it seems
reasonable that a not dissimilar procedure might work. How-
ever, if we do not know the 0 equation and how it links to the
r equation, how can we write down the radial equation with
its dependence on 1 or a possible equivalent? A clue is forth-
coming by examining the properties of the radial functions
obtained from the differential equation (see, for example,

ref. 2). That radial function looks like [exp(-p/2)]IL(7,2+)(p),
where p is proportional to r and L(2i )(p) is an associated
Languere polynomial. But we also know specifically that

[1]

where n' = n - 1. Therefore, if we know the polynomials for
values of n with I = 0, we can readily get the polynomials for
I = 1. Similarly, by using the polynomials for 1 = 1, we can
obtain polynomials for 1 = 2, etc.
Now we already know the discrete polynomials for all val-

ues of n, if I or its equivalent is zero (1). Hence, if we take
second differences of such, perhaps we can get valid discrete
polynomials for 1 # 0. This can presumably be done not only
for the polynomials but also for the finite difference equation
from which the I = 0 solutions were obtained.

It was shown earlier (1) that discrete polynomials, compa-
rable to the appropriate Languere polynomials for I = 0, are
given, using previous notation, by the expression

n== (-1)k( n + 1)k(-; + t kyk
= F(~/~ =k=O k!(k + 1)! [2

where

( = r/A = rmc/h, [3a]

and

A = Ze2/(hc) = (n/2)[(1 + y) /2 - (1 + y)-1/2] [3b]

Upon taking 1 successive second differences of Gn,0((), using
for this purpose a second difference in the form GQ0(( + 1) -
2Gn,(A) + Gn,0(Q - 1), we obtain an expression that, except
for a constant multiplier that we shall omit, looks like

-, 1f (-1)( -n + I + i)k( + 1 + 1)kyk
k=O k!(2 + 2N) 4

GJO is a variety of the Hahn polynomials (3). The integer
n, as it appears in Eq. 4, is actually less by an amount 1 from
the n of Eq. 2. This is a result of an adjustment that is neces-
sary because a second difference reduces the principal quan-
tum number, n, by 1 and increases I by 1. In other words, the
n of Eq. 4 is the total quantum number of the final state in
question and not the n of the starting equation.

Eq. 4 is valid only for values of I- l + 1 and for n a I + 1.
The requirement that 4 starts at a nonzero threshold value
appears to have no immediate counterpart in the continuous
solutions. We can, however, see a physical significance to

*1 have obtained some approximations, but they lack the aesthetic
preciseness one seeks in endeavoring to lock together discrete
mathematical modules.
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the threshold. Let us assume that, for discrete as well as for
continuous representations, the total angular momentum of
the electron is given by the familiar expression [1(1 + 1)I/2hi.
Thinking in pseudoclassical terms and using a wave vector
kinetic energy expression (4), we can calculate the electron
velocity at the perihelion of a trajectoryt as follows:

0 = mv2/2
= 1(1 + 1)h2/(2mr2)
= 1(1 + 1)mc2/242. [5]

From this we see that, if ; = 1,

v = (1 + 1/l)1/2c. [6]

Since this value of v is larger than c, we conclude that the
electron cannot get that close to the nucleus. On the other
hand, for I= I + 1, we find

v = (1 + /I)-'/2c, [7]

a quantity less than c and, hence, permissible. The foregoing
arguments appear to be fully consistent with the wave vector
energy concept set forth earlier (4). The wave vector energy
must always be less than mc2/2 and group velocities must be
less than c.

More General Radial Difference Equations

Although Eq. 4 provides us with the desired polynomials, we
would also like to find an equation for which the polynomials
are solutions. Such a difference equation can be obtained by
manipulating the equation whose solutions are G,0(Q) =
F(Q)/(. The equation for Gn,0(Q) is found from that for F(Q) to
be (1)

(1 + y)1/2(t - 1)Gn,0( - 1) - 2( - u/t)tG 0(Q) +

(1 + y)-/2(t + 1)Gn,A(; + 1) = 0. [8]

Upon taking 1 successive second difference of the whole of
Eq. 8, we find after simplification that

(1 + y)'/2(t - I - 1)Gn,A - 1) - 2( - A/G)Gnl(4) +

(1 + y)'/2(Q + 1 + 1)Gns,(A + 1) = 0. [9]

In Eq. 9, the number n is less by l than the n of Eq. 8 for
reasons explained earlier in connection with Eqs. 2 and 4
The derivation described would actually appear to replace p
by A(n - 1)/n. The factor (n - 1)/n must be suppressed,
however, in light of Eq. 3b, since successive second differ-
ences reduce the original n by I to give the final n. The form
of Eq. 3b stays intact, with tL constant and y a function of n.
Although n does not appear explicitly in the three coeffi-
cients of Eq. 9, it is implicit by reason of Eq. 3b. It can now
be established by direct substitution that the expression of
Eq. 4 will satisfy Eq. 9 provided

2X = (1 + y)'/2 + (1 + y)-/2
= 2(1 + ju2/n2)1/2 [10]

The wave vector energy, &n, is given by

64n = (mc2/2)(1 - X2) = -mc2t,2/(2n2)
= - 2r2mZ2e4/(n2h2). [11]

tThis should not be considered a fixed orbit like that of Bohr.

It is clear that the energy levels are degenerate and, as far as
l is concerned, such degeneracy is precisely the same as for
the solutions of Schrodinger's equation. Finally, the degen-
erate energy expression (Eq. 11) looks like the Bohr-Ryd-
berg equation, except for the use of m in place of mi.
Although we appear to have satisfactory discrete polyno-

mials, the complete radial wave vector still requires two
more factors if it is to resemble [exp(-p/2)]dL(n41zl)(p), as
obtained from the differential equation. The exponential fac-
tor poses no problem; it must be (1 + y)-/2. On the other
hand, we cannot simply use A' for the other factor; surely it
must be some kind of discrete l-th degree power of t.
An acceptable factor can be found by judicious guesswork

followed by trial and error. The overall weighted wave vec-
tor, corresponding to rfi(r) is found to be given by +(Q) where

04) = (1 + y) 92[(t -1)/2]+lGnAt). [12]

The factor [(Q - 1)/2]1+1, which is the same as (t - I)(Q - l +
2) ... (Q + l - 2)(Q + 1)/21+1, is actually of degree I + 1 instead
of 1. This accommodates the geometric weight factor, like
the factor r of rqi(r), to render the square of 4n,i(Q) propor-
tional to the probability of finding the electron at a distance
tA from the proton.
Upon replacing G, (4) in Eq. 9 by 'n,,(Q), by using Eq. 12,

we obtain

-1) - (X - g/t){[(t - l + 1)/2]1/[( -1)/2]1+11};0() +

0(t + 1) = O.- [131

Unless the electron is close to the nucleus, t will be large
compared to 1. For large values of t, we can write

tffQ - I + 1)/2]1/[(t - l)/2]1+1} =

2 + 1(l + 1)/t2 + ...[14]

The term 1(1 + 1)/t2 is precisely what is needed to transform
Eq. 13 by a limit process into the ordinary differential equa-
tion for the radial part of the continuous wave function.

Discussion

Ordinarily, when working on a theoretical problem, one
starts with some basic equation and seeks a solution applica-
ble to the specific problem on hand. In some respects, the
treatment in this paper is much the reverse. We quickly
found what looked like good discrete radial polynomials ap-
plicable to states of the hydrogen atom possessing angular
momentum. Next, we hunted for a difference equation from
which those polynomials might be obtained. This was fol-
lowed by embellishing the polynomials with other factors to
obtain an overall radial wave vector. Finally, we found an
equation for which those radial wave vectors are solutions.
At this juncture, however, we might properly ask: how

good are those equations? Now we do know that the differ-
ence equations and their solutions, as presented in this pa-
per, all reduce to some familiar differential equations and
continuous functions as c -X o0 (which makes A -* 0). Such
limit equations are shown in the Appendix. Although we get,
through the limit process, the expected continuous expres-
sions, this does not prove that the discrete equations are cor-
rect; after all, there are an infinite number of difference
equations that can become a particular differential equation.
Nevertheless, there are some unique features of the discrete
treatment presented here that are attractive. The threshold
value for the smallest possible separation of the electron
from the proton is an example. This conclusion arose quite
naturally and looks most reasonable, even though it vanishes
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as A -* 0. The energy relations are likewise highly satisfac-
tory without requiring approximations or recourse to asymp-
totic behavior.

It is my hope that Eq. 13 will be helpful in obtaining a 6
equation. We can see from Eq. 14 that there is some prom-
ise. The rotational wave vector energy, Trot, divided by mc2,
will approximately look much like

Trot 1(l + 1) 1(l + 1)A _ 1( + 1)12
mc 2 2 2r2 - 2mc2 '

where I is a moment of inertia. Hence the discrete counter-
part of (' does seem to tell us something about how the 6
equation will mesh with the C equation. From this we might
well be able to formulate a set of discrete spherical harmon-
ics. For this purpose it should prove helpful to recognize that
in essence

If p = 2moZe2r/(nh2), then

lim y =p,

lim (1 + y)- /2 = exp(-p/2),
A-x

and
[15]

lim Gn l) = Enl (-n + 1 + 1)kpk
C-+oc &-i k'(2 + 210k [

Also,

pG"(p) + [2(1 + 1) - p]G'(p) + [n - I - 1]G = 0, [A9]

lim 04&) = exp(-p/2)d+p'L(n2j l(p),
B--ox

In other words, the separation of variables should involve
factoring of X, while retaining cognizance of relativistic ener-
gy considerations.

Appendix

The discrete equations and expressions in the main text can
be reduced to continuous forms by letting c -a oc. Some of

these continuous formulations are listed below. If previously
numbered equations are involved, they are given the same
numbers as before but are preceded by the letter A.

and

+"(p) + [-1/4 + m/p - 1(1 + 1)/p2] = 0. [A13]
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